Novel and Anti-Inflammatory Constituents of Garcinia subelliptica

Jing-Ru Weng,^[a] Chun-Nan Lin,^{*[a]} Lo-Ti Tsao,^[b] and Jih-Pyang Wang^[b]

Abstract: Four novel phloroglucinol derivatives, garcinielliptones A (1), B (2), C (3), D (4), a novel triterpenoid, garcinielliptone E (5), and three known compounds were isolated from the seeds of *Garcinia subellipti*ca. The structures, including relative configurations, were elucidated by means of spectroscopic data. Known compounds garsubellin A (6) and garcinielliptin oxide (7) showed potent inhibitory effects on the release of β -glucuronidase, and β -glucuronidase and histamine, respectively, from peritoneal mast cells stimulated with compound 48/80 in a concentration-dependent manner with IC_{50} values of $15.6 \pm$ 2.5, and 18.2 ± 3.6 and $20.0 \pm 2.7 \,\mu$ M, respectively. Compound **7** showed po-

Keywords: anti-inflammatory activity • *Garcinia subelliptica* • NMR spectroscopy • phloroglucinol derivatives • terpenoids tent inhibitory effects on the release of β -glucuronidase and lysozyme from neutrophils stimulated with formyl-Met-Leu-Phe(fMLP)/cytochalasin B (CB) in a concentration-dependent manner with IC₅₀ values of 15.7 ± 3.0 and $23.9 \pm 3.2 \,\mu$ M, respectively. Compound **7** also showed potent inhibitory effect on superoxide formation from neutrophils stimulated with fMLP/CB also in a concentration-dependent manner with an IC₅₀ value of $17.9 \pm 1.5 \,\mu$ M.

Introduction

Recently, the isolation and characterization of several various constituents and antioxidant xanthones of the wood and root bark of Garcinia subelliptica Merr. (Guttiferae) have been reported.^[1, 2] In the search for bioactive constituents in Formosan Guttiferae plants, we investigated bioactive constituents of the seeds of G. subelliptica and reported two novel triterpenoids named garcinielliptin oxide and garcinielliptone, respectively.^[3, 4] In a continuing study of biologically active compounds in Formosan Guttiferae plants, we further investigated the constituents of the seeds of G. subelliptica; four novel phloroglucinols, garcinielliptones A-D (1-4), a novel triterpenoid, garcinielliptone E (5), and three known compounds, garsubellin A (6),^[5] garcinielliptin oxide (7),^[3] and garsubellin D (8),^[6] were isolated from the seeds of this plant. In the present paper, the structure elucidations of the five novel compounds 1-5 and the anti-inflammatory effects of 1, 2, 6, 7, and 8 are reported.

 [a] Prof. C.-N. Lin, J.-R. Weng School of Pharmacy, Kaohsiung Medical University Kaohsiung, Taiwan 807 (Republic of China) Fax: (+886)7-5562365 E-mail: lincna@cc.kmu.edu.tw

[b] L.-T. Tsao, Prof. J.-P. Wang Department of Education and Research Taichung Veterans General Hospital, Taichung Taiwan 407 (Republic of China)

Results and Discussion

The molecular formula of garcinielliptone A (1) was determined to be $C_{30}H_{46}O_5$ by HR-FABMS (m/z 467.3122 [M-1- H_2O^{-}) and DCIMS (*m*/z 485.2917 [*M*-1]⁻), which was consistent with the ¹H and ¹³C NMR data. The IR absorption of 1 implied the presence of OH (3424 cm^{-1}), CO (1724 cm^{-1}), conjugated ketone (1657 cm⁻¹), and C=C (1602 cm⁻¹) moieties. The ¹H NMR spectrum of **1** (see Experimental Section) resembles that of garsubellin A (6), measured in CDCl₃, except for the proton signals of H2-7, H2-17, H2-18, Me-21, and H₂-22. The ¹³C NMR spectrum of $\mathbf{1}$ (Table 1) also resembles that of 6, measured in CDCl₃, except for the carbon signals of C-3, C-4, C-6, C-17, C-18, C-19, C-21, and C-22. This clearly indicates that 1 possesses the partial moiety represented as bold lines in 1 (Figure 1). The ${}^{1}H - {}^{1}H$ COSY correlations of H₂-22/H-23 and the HMBC correlations of H₂-22/C-1 and C-2 establish the connectivities between C-22 and C-23, and C-22 and C-2. The HMBC correlations of H2-22/C-3, HB-17/C-3, C-4, and C-5, C-19/Me-20 and Me-21, and Me-20/Me-21, the ¹H-¹H COSY correlation between H₂-17 and H₂-18, and the NOESY correlations of H_{β} -18/Me-20 and Me-21 establish the C-2 linked through C-3 and C-4 to C-5, and the 3-hydroxy-3methylbutyl group located at C-4. The HMBC correlations of H_{β} -7/C-4 and C-5 establish the connectivities between C-4 and C-5, and C-4 and C-7. The HMBC correlation of C-6/Me-10 and Me-11 and NOESY correlation of Me-10/Me-29 confirm that the 1-oxopropyl group is linked to C-6 and the hydroxy group is linked to C-3. Based on the above results and the fact

Table 1. ¹³C NMR data for compounds **1–5** in CDCl₃.^[a]

Position	1	2	3	4	5
1	194.6	191.3	193.1	194.6	209.2
2	115.9	114.6	117.1	115.9	97.1
3	166.0	169.9	173.6	166.0	207.1
4	64.5	56.7	59.6	64.6	44.0
5	206.8	207.2	204.6	207.0	107.8
6	75.8	83.6	82.2	80.5	40.8
7	40.5	39.4	38.4	40.7	33.6
8	43.3	43.6	42.4	43.3	54.9
9	45.3	46.5	46.4	45.3	70.6
10	16.4	15.6	16.0	25.4	217.3
11	23.9	23.0	22.7	27.9	38.7
12	27.4	26.5	26.5	27.3	16.9
13	122.5	122.7	122.2	122.5	19.3
14	133.1	133.1	133.5	133.1	17.7
15	17.7	17.8	25.8	17.7	23.0
16	25.8	25.9	17.9	25.8	19.8
17	16.8	16.4	30.1	29.3	36.7
18	32.2	119.5	90.4	119.9	70.2
19	80.5	133.4	70.6	133.8	28.8
20	25.5	18.2	26.9	18.0	29.4
21	27.8	25.7	24.1	25.9	27.7
22	29.3	29.3	18.0	16.8	122.0
23	119.9	31.8	41.3	32.1	133.3
24	133.8	79.0	71.1	75.7	25.8
25	18.0	24.7	29.9	16.4	18.0
26	25.9	27.8	28.7	24.0	31.3
27	209.3	209.3	208.8	208.8	119.3
28	40.2	42.4	42.0	47.0	133.3
29	21.7	20.5	20.5	18.0	25.8
30	21.2	21.5	21.4	27.4	17.7
31				11.5	

[a] The number of protons directly attached to each C atom was verified by DEPT experiments. Signals obtained by ${}^{1}H{}^{-1}H$ COSY, HMQC, HMBC, and NOESY techniques and comparison with corresponding reported data.^[3, 5]

that C-5 and C-6 are quarternary carbon atoms, C-5 and C-6 must be connected. Thus garcinielliptone A was characterized as **1** with a bicyclo[3.3.1]nonane moiety. The presence of characteristic peaks at m/z 468 $[M - H_2O]^-$, 467 $[M - H_2O - 1]^-$, 399 [468 – a]⁻ (fragment a is defined in Figure 1) in its DCIMS also support the characterization of **1**.

Selected cross peaks were observed in the NOESY spectrum of **1**, as indicated in Figure 2. The relative configurations at C-4, C-6, and C-8 were deduced from the NOESY cross peaks of H_{β} -12/ H_{β} -8, H_{β} -8/ H_{β} -7, H_{β} -7/ H_{β} -17, H_{β} -17/ H_{β} -18, H_{α} -12/Me-10, Me-10/Me-29, and Me-10/Me-16, while

Abstract in Chinese:

由福木種子分離得到四個新穎的 phloroglucinol 衍生物、garcinielliptones A (1) , B (2) ,C (3) ,D (4) ,一個新穎的三帖類,garcinielliptone E (5)及三個已知化 合物。化學結構及相對立體係由光譜資料證明。已知化合物 garsubellin A (6)及 garcinielliptin oxide (7)分別對老鼠腹腔巨 噬細胞以 compound 48/80 引發之 β -glucuronidase,及 β -glucuronidase 與組織胺釋放具有很強的抑制活性,且與濃度有關,IC₅₀ 值分別為 15.6 ± 2.5 μ M·及 18.2 ± 3.6 與 20.0 ± 2.7 μ M。化合物 7 對老鼠 嚐中性白血球以 formyl-Met-Lcu-Phe (fMLP)/cytochalasin B (CB)引發之 β -glucuronidase 及溶小體酶釋放,其抑制活性呈現與濃度有關的現象,IC₅₀ 值分 別為 15.7 ± 3.0 及 23.9 ± 3.2 μ M°化合物 7 亦對老鼠 嚐中性白血球以 fMLP/CB 引 發過氧化物的形成、也呈現抑制活性與濃度有關的現象,且 IC₅₀ 值為 17.9 ± 1.5 μ M。 3-hydroxy-3-methylbutyl group at C-4, 1-oxopropyl group at C-6, and prenyl group at C-8 are on the β , α , and α sides of **1**, respectively.^[5] From the above results, compound **1** was characterized as having a *trans*-bicyclo[3.3.1]nonane moiety (Figure 1). However, further experiments are required to elucidate the absolute stereochemistry of **1**.

Based on the information from ¹H, COSY, and NOESY spectra, a computer-assisted 3D structure (Figure 2) was obtained by using the molecular modeling program CS CHEM 3D V3.5.1, with MM2 force-field calculations for energy minimization. The calculated distances between H_β-18 and H_β-17 (2.52 Å), H_β-17 and H_β-7 (2.48 Å), H_β-7 and H_β-8 (2.30 Å), H_β-8 and H_β-12 (2.41 Å), H_α-12 and Me-10 (3.76 Å), Me-10 and Me-16 (3.07 Å), and Me-10 and Me-29 (2.28 Å), are all less than 4.00 Å; these values are consistent with the well-defined NOESY experiments observed between each of these proton pairs. Thus garcinielliptone A (1) was characterized as 3-hydroxy-4-(3-hydroxy-3-methylbutyl-6-(1-oxopropyl)-2,8-diprenyl-8β-H-*trans*-bicyclo[3.3.1]non-2-en-1,5dione (1).

The molecular formula of garcinielliptone B (2) was determined to be $C_{30}H_{44}O_4$ by HR-EIMS (m/z 468.3242 $[M]^+$), which was consistent with the ¹H and ¹³C NMR data. The IR absorption of 2 implied the presence of CO (1724 cm^{-1}) , conjugated ketone (1639 cm^{-1}) , and C=C (1594 cm^{-1}) moieties. The ¹H NMR data of **2** were very similar to those of 1, except for the absence of signals due to 3-hydroxy-3-methylbutyl group and the appearance of signals due to a 2,2-dimethylpyran moiety. The HMBC correlations of H_{β} -7/C-3, C-4, and C-5 and H_{α} -7/C-3 established the connectivities between C-4 and C-5, C-3 and C-4, and C-4 and C-7, and the HMBC correlations of H_{β} -17/C-4 and C-18, H_a-17/C-4, C-5, C-18, and C-19, H-18/Me-20, and Me-21/ Me-20 confirmed that a prenyl group was linked at C-4. For the 2,2-dimethylpyran moiety, the connectivity between C-22 and C-23 was clearly revealed by the COSY data. The HMBC correlations of H₂-22/C-2, C-3, C-24 established that the 2,2-dimethylpyran moiety is fused on C-2-C-3 bond. In the ¹³C NMR spectrum of 2 (Table 1), the chemical shift values of 2 were almost identical to corresponding data of 1 except for C-1, C-2, C-3, C-4, C-6, and C-17-C-26. The presence of significant peaks at m/z 453 $[M - Me]^+$, 399 $[453 - a + H]^+$, and 357 $[M - 2a - H]^+$ (fragment a is defined in Figure 1) in its EIMS also supported the characterization of 2. Thus garcinielliptone B (2) was characterized as having a new 3,4-dihydro-2H-pyrano[2,6-b]bicyclo[3.3.1]nonane skeleton.

Selected cross peaks were observed in the NOESY experiment of **2**, as indicated in Figure 2. The relative configurations at C-4, C-6, and C-8 were deduced from NOESY cross peaks of H_{β}-7/H_{β}-17, H_{β}-8/Me-10, and Me-10/Me-30 while prenyl groups at C-4 and C-8, and 1-oxopropyl group at C-6 are on the β , α , and β sides of **2**, respectively.^[5]

Based on the information from ¹H, COSY, and NOESY spectra, a computer-assisted 3D structure (Figure 2) was obtained by using the above-mentioned molecular modeling program, with MM2 force-field calculations for energy minimization. The calculated distances between H_{β}-7 and H_{β}-17 (2.57 Å), H_{β}-8/Me-10 (2.24 Å), Me-10/Me-30 (2.55 Å),

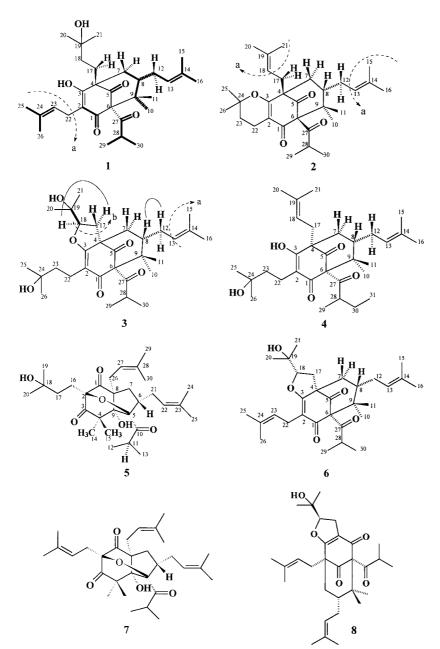


Figure 1. Structures of 1-8, substructure (bold lines) of 1, selected NOESY cross peaks of 3, and MS fragmentation patterns of 1-3.

are all less than 4.00 Å; these values are consistent with the well-defined NOESY experiments observed between each of these proton pairs. Therefore, garcinielliptone B (2) was characterized as $2,3-(2,2-\text{dimethyl}-3,4-\text{dihydro}-2\text{H-pyran})-6-(1-\text{oxopropyl})-4,8-\text{diprenyl}-8\beta-\text{H-}cis-\text{bicyclo}[3.3.1]\text{non-}1,5-\text{dione.}$

The molecular formula of garcinielliptone C (**3**) was determined to be $C_{30}H_{46}O_6$ by HR-EIMS (m/z 502.3305 $[M]^+$), which was consistent with the ¹H and ¹³C NMR data. The IR absorption of **3** implied the presence of OH (3416 cm⁻¹), CO (1723 cm⁻¹), conjugated ketone (1631 cm⁻¹), and C=C (1605 cm⁻¹) moieties. The ¹H NMR spectrum of **3** (see Experimental Section) was very similar to that of **6**, except for the absence of signals due to a prenyl group and the appearance of signals due to a 3-hydroxy-3-

methylbutyl group. The HMBC correlations of H2-22/C-1, C-2, and C-3, established the connectivities between C-1 and C-2, C-2 and C-3, and C-2 and C-22, and the HMBC correlations of H2-22/ C-23 and C-24, Me-25/C-23, C-24, and C-26, Me-26/C-23, C-24, and C-25 confirmed that the prenyl group linked at C-2. In the ¹³C NMR spectrum of **3** (Table 1), the chemical shift values of 3 were almost identical to the corresponding data of 6 except for C-22-C-26. In the EIMS of 3, the base peak at m/z 415 was attributed to the fragment [M $b-H^{+}$, and significant peak at m/z 446 ($[M-a-H]^+$) (fragments a and b are defined in Figure 1) also supported the characterization of 3. Thus, garcinielliptone C (3) was characterized as a bicyclo[3.3.1]nonane skeleton.

The relative configurations at C-4 and C-6 are determined by comparing the relative stereochemistry of 6.^[5] The NOESY experiment of 3 showed cross peaks between H_{β} -8/ H_{β} -12 and H_{α} -17/H-18 (Figure 1). Based on the above NOESY experiment and the values of coupling constants of H₂-17 and H-18 in the ¹H NMR spectrum, we can say that the 2- α -hydroxyisopropyl and prenyl groups are on β and α sides of 3, respectively. Therefore, garcinielliptone C (3) was characterized as 2-(3-hydroxy-3-methylbutyl)-3,4-(2-a-hydroxyisopropyldihydrofurano)-6-(1-oxopropyl)-8-prenyl-8β-H-cis-bicyclo[3.3.1]non-2-en-1,5-dione.

The molecular formula of garcinielliptone D (4) was determined to be $C_{31}H_{48}O_5$ by HR-EIMS (m/z 498.3340 $[M-2]^+$), which is consistent with the ¹H and ¹³C NMR data. The IR absorption of 4 implied the presence of OH $(3416 \text{ cm}^{-1}), \text{CO}$ $(1724 \text{ cm}^{-1}),$ conjugated ketone (1646 cm⁻¹), and C=C (1602 cm⁻¹) moieties. The ¹H NMR spectrum of 4 were very similar to those of 1, except for the presence of signals due to an 1-oxobutyl group and the absence of signals due to 1-oxopropyl group. In the ¹³C NMR spectra of 4, the chemical shift values of 4 were almost identical those of 1 except for C-10, C-11, and C-17-C-26, C-28, C-29, C-30, and C-31. Additionally, ¹H-¹H COSY and HMQC of 4 indicated the presence of a sec-butyl group, which was not present in the structure of 1. These spectral data suggest that 4 is a phloroglucinol derivative, in which the

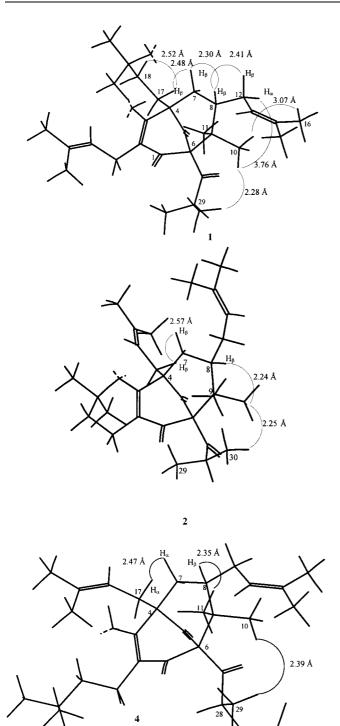


Figure 2. Selected NOESY correlations and relative stereochemistry for 1, 2, and 4.

Me C-30 group of **1** is replaced by an ethyl group. The HMBC correlations of H_2 -17/C-3, C-4, C-5, C-7, C-18, and C-19, H_2 -22/C-2, C-3, C-23, and C-24, Me-29/C-27, C-28, and C-30, H_2 -30/C-28, Me-31/C-28 and C-30 established that the prenyl group, 3-hydroxy-3-methylbutyl, and *sec*-butyl group were linked to C-8, C-2, and C-27, respectively. The HMBC correlations of C-6/Me-10 and Me-11, and Me-10/Me-11, and NOESY correlations of Me-10/Me-29 and H_8 -8/Me-11

established Me-10 and Me-11, and C-27, were linked to C-9 and C-6, respectively.

Selected cross peaks were observed in the the NOESY spectrum of **4** as shown in Figure 2. The relative configurations at C-4, C-6, and C-8 are deduced from NOESY cross peaks of H_{α} -7/ H_{α} -17, H_{β} -8/Me-11, and Me-10/Me-29 while the prenyl groups at C-4 and C-8, and 1-oxobutyl group at C-6 are all on the α side of **4**.^[5]

Based on the information from ¹H, COSY, and NOESY spectra, a computer-assisted 3D structure (Figure 2) was obtained by using the above-mentioned molecular modeling program, with MM2 force-field calculations for energy minimization. The calculated distances between H_a-7 and H_a-17 (2.47 Å), H_β-8/Me-11 (2.35 Å), Me-10/Me-29 (2.39 Å), are all less than 4.00 Å; these values are consistent with the well-defined NOESY experiments observed between each of these proton pairs. Therefore, garcinielliptone D (4) was characterized as 2-(3-hydroxy-3-methylbutyl)-3-hydroxy-6-(1-oxobutyl)-4,8-diprenyl-8β-H-*cis*-bicyclo[3.3.1]non-2-en-1,5-dione.

The molecular formula of garcinielliptone E (5) was determined to be $C_{30}H_{46}O_6$ by HR-EIMS (m/z 502.3288 [M]⁺), which was consistent with the ¹H and ¹³C NMR data. The IR absorption of 5 implied the presence of OH (3313 cm⁻¹) and three CO (1769, 1739, 1675 cm⁻¹) moieties. The ¹H NMR spectrum of 5 resembled that of garcinielliptone oxide (7),^[3] except for the absence of signals due to a prenyl group and the appearance of signals due to a 3-hydroxy-3-methylbutyl group. The ¹³C NMR spectrum of 5 (Table 1) also resembled to those of 7 except for C-16 – C-20, indicating that 5 was a triterpenoid. From the above information in conjunction with the molecular formula, we suggest that compound 5 possesses a *cis*-bicyclo[4.3.0]nonane moiety with a hydroxy group at C-9.^[3]

The HMBC correlations of $H_2-17/C-19$ and C-20, Me-19/C-18, Me-20/C-18 and NOESY correlations of Me-19/Me-14, Me-20/Me-14 confirmed that the 3-hydroxy-3-methylbutyl group was linked to C-2. The presence of significant peaks at m/z 484 $[M-H_2O]^+$, 388 $[M-H_2O-Me_2CCHCH_2CO+H]^+$, 345 $[M-C_3H_7-H_2O-Me_2CCHCH_2CO+H]^+$, 319 $[M-C_3H_7-H_2O-Me_2CCHCH_2-CO-CO+3H]^+$ in its EIMS also supported the characterized as 2-(3-hydroxy-3-methylbutyl)-9-hydroxy-5-(1-oxopropyl)-6,8-diprenyl-6 β -H-*cis*-bicyclo[4.3.0]non-2,5-oxo-1,3-dione. Garcinielliptone E (**5**) is the second example of triterpenoid with a novel skeleton.

The anti-inflammatory activity of **1**, **2**, and **6**–**8** were studied in vitro by measuring the inhibitory effects on the chemical mediator released from mast cells and neutrophils. Compounds **6** and **7** showed potent inhibitory effects on the release of β -glucuronidase, and β -glucuronidase and histamine, respectively, from peritoneal mast cells stimulated with compound 48/80 (10 µg mL⁻¹) in a concentration-dependent manner with IC₅₀ values of 15.6±2.5, and 18.2±3.6 and 20.0±2.7 µM, respectively, while **1**, **2**, and **8** had no significant inhibitory effects (Table 2). These results indicate the cleavage of dihydrofurano ring from chemical bond between O-C-3 and C-18 in **6** did not enhance the inhibitory effects. As shown

- 1961

FULL PAPER

Table 2. The inhibitory effects of **1**, **2**, and **6–8** on the release of β -glucuronidase and histamine from rat peritoneal mast cells stimulated with compound 48/80 (10 µg mL⁻¹).

Compound	IC ₅₀ [μм][а]
	β -Glucuronidase	Histamine
1	$> 30 (38.6 \pm 2.4)$	> 30 (36.1 ± 1.3)
2	$> 30 (31.7 \pm 1.2)$	$>30 (34.9 \pm 3.9)$
6	15.6 ± 2.5	$> 30 (46.7 \pm 3.7)$
7	18.2 ± 3.6	20.2 ± 2.7
8	$> 30 (47.7 \pm 2.8)$	$> 30 (37.6 \pm 3.6)$
mepacrine	20.6 ± 1.2	50.1 ± 4.1

[a] When 50% inhibition could not be reached at the highest concentration, the % of inhibition is given in parentheses. Data are presented as the mean \pm s.e.m. (n = 3-5). Mepacrine was used as a positive control.

in Table 2, there is a clear indication that compounds which possess a *cis*-bicyclo[4.3.0]nonane moiety (i.e., 7) have potent inhibitory effects on mast cell degranulation stimulated with compound 48/80, and the inhibitory effects of 6 and 7 are stronger than that of mepacrine. Mepacrine was used in this experiment as a positive control.

The introduction of formyl-Met-Leu-Phe (fMLP) $(1 \mu m)/$ cytochalasin B (CB) (5 μ g mL⁻¹) stimulated the release of β glucuronidase and lysozyme from rat neutrophils. Compound 7 had potent and concentration-dependent inhibitory effects on neutrophil degranulation, while **1**, **2**, **6**, and **8** did not show significant inhibitory effects (Table 3). These results indicated that triterpenoids with bicyclo[3.3.1]nonane moiety did not show significant inhibitory effects. Trifluoperazine was used in this experiment as a positive control.

Table 3. The inhibitory effects of 1, 2, and 6-8 on the release of β -glucuronidase and lysozyme from rat neutrophils stimulated with fMLP $(1 \,\mu m)/CB$ (5 $\mu g m L^{-1}$).

Compound	IC ₅₀ [µм] ^[а]			
	β -Glucuronidase	Lysozyme		
1	$> 30 (-3.0 \pm 3.4)$	$> 30 (13.5 \pm 4.8)$		
2	$>30(16.4\pm2.8)$	$> 30 (10.0 \pm 1.5)$		
6	$> 30 (17.5 \pm 1.1)$	$> 30 (34.6 \pm 3.1)$		
7	15.7 ± 3.0	23.9 ± 3.2		
8	$>30 (25.4 \pm 3.4)$	$> 30 (-5.2 \pm 4.5)$		
trifluoperazine	12.2 ± 0.3	13.2 ± 0.7		

[a] When 50% inhibition could not be reached at the highest concentration, the% of inhibition is given in parentheses. Data are presented as the mean \pm s. e. m. (n=3-5). Trifluoperazine was used as a positive control.

The introduction of fMLP $(0.3 \,\mu\text{M})/\text{CB}$ $(5 \,\mu\text{gmL}^{-1})$ or phorobol myristate acetate (PMA) (3 nM) stimulated superoxide anion generation in rat neutrophils. Compound **7** had potent inhibitory effect on fMLP/CB-induced superoxide anion generation, while **1**, **2**, **6**, and **8** had no significant inhibitory effects (Table 4). These results also indicated that triterpenoids which possess a *cis*-bicyclo[4.3.0]nonane moiety have potent inhibitory effects on fMLP/CB-induced superoxide anion generation. Both fMLP and PMA activate NADPH oxidase to produce superoxide anion, but through different cellular signaling mechanisms.^[7] The observations that **7** had no appreciable effect on PMA-induced response suggests the involvement of PMA-independent signaling

Table 4. The inhibitory effects of 1, 2, and 6-8 on superoxide anoion generation in rat neutrophils stimulated with fMLP $(0.3 \,\mu\text{M})/\text{CB}$ (5 μgmL^{-1}) or PMA (3 nM).

Compound	ІС ₅₀ [μм] ^[a]			
	fMLP/CB	PMA		
1	$> 30 (-12.5 \pm 7.3)$	$> 30 (15.7 \pm 5.2)$		
2	> 30 (23.4 ± 1.8)	$> 30 (9.9 \pm 4.2)$		
6	$> 30 (17.5 \pm 1.1)$	$> 30 (34.6 \pm 3.1)$		
7	17.9 ± 1.5	$> 30 (43.6 \pm 3.1)$		
8	$> 30 (30.0 \pm 1.6)$	$> 30 (41.8 \pm 3.9)$		
trifluoperazine	6.2 ± 0.3	7.6 ± 0.3		

[a] When 50% inhibition could not be reached at the highest concentration, the % of inhibition is given in parentheses. Data are presented as the mean \pm s.e.m. (n = 3-5). Trifluoperazine was used as a positive control.

pathway. The inhibitory effect of compouds 3-5 on mast cell and neutrophil degranulation are currently being undertaking.

Compound **6** also induced choline acetyltransferase (ChAT) activity in P10 rat septal neuron cultures.^[5] The present results suggest that compounds **6** and **7** may have antiinflammatory effects, because they inhibited the chemical mediators released from mast cells and neutrophils.

Experimental Section

General: Optical rotations: JASCO model DIP-370 digital polarimeter. IR spectra: Hitachi 260–30 spectrophotometer; $\tilde{\nu}$ in cm⁻¹. ¹H and ¹³C NMR spectra: Varian Unity-400 spectrometer; 400 and 100 MHz, respectively; δ in ppm, *J* in Hz. MS: JMS-HX100 mass spectrometer; *m/z* (rel. %)

Plant material: The fruits of *G. subelliptica* were collected at Kaohsiung, Taiwan, in July 2001. A voucher specimen (2003) has been deposited at the Department of Medicinal Chemistry, School of Pharmacy, Kaohsiung Medical University.

Extraction and isolation: The fresh seeds (7.5 kg) obtained from the fresh fruits (22.8 kg) of *G. subelliptica*, were extracted with chloroform at room temperature. The CHCl₃ extract was concentrated under reduced pressure to afford a brown residue (130 g). This residue was subjected to column chromatography (silica gel). Elution with *n*-hexane/acetone (3:1) yielded 1 (20 mg), **2** (18 mg), and **6** (31 mg). Elution with CHCl₃/acetone (9:1) yielded **3** (15 mg), **4** (14 mg), and **5** (8 mg). The known compounds **6**, **7**, and **8** were identified by spectral methods and compared with spectral data reported in literature.^[3, 5, 6]

Garcinielliptone A (1): Colorless oil; $[a]_D = -33$ (c = 0.62 in CHCl₃); IR (film on NaCl): $\bar{\nu} = 3424$ (OH), 1724 (C=O), 1657, 1602, 1443 cm⁻¹; ¹H NMR ([D₁]CHCl₃): $\delta = 1.00$ (s, H₃-11), 1.05 (d, J = 6.4 Hz, H₃-29), 1.13 (d, J = 6.4 Hz, H₃-70), 1.25 (s, H₃-10), 1.29 (dd, J = 12.0, 7.6 Hz, H_a-7), 1.33 (s, H₃-20), 1.35 (m, H_β-8), 1.39 (s, H-21), 1.50 (s, H₃-15), 1.56 (dd, J = 13.2, 5.2 Hz, H_a-12), 1.63 (s, H₃-25), 1.65 (s, H₃-26), 1.69 (dd, J = 9.2, 6.4 Hz, H_a-18), 1.77 (m, H_β-18), 1.77 (m, H_β-7), 2.05 (dd, J = 13.5, 5.2 Hz, H_a-12), 2.37 (m, H-28), 2.43 (m, H₂-71), 2.43 (m, H₂-22), 4.90 (t, J = 7.2 Hz, H-13), 5.00 ppm (t, J = 7.2 Hz, H-23); ¹³C NMR: see Table 1; DCIMS: mlz (%): 485.2917 $[M - 1]^-$ (3), 468.2695 (100), 406.1470 (7), 390.1648 (37); HR-FABMS: calcd for C₃₀H₄₃O₄⁻: 467.3161; found: 467.3122 $[M - 1 - H_2O]^-$.

Garcinielliptone B (2): Colorless oil; $[a]_D = -23$ (c = 0.11 in CHCl₃); IR (film on NaCl): $\tilde{\nu} = 1724$ (C=O), 1639, 1594 cm⁻¹; ¹H NMR ([D₁]CHCl₃): $\delta = 0.99$ (s, H₃-10), 1.01 (d, J = 6.4 Hz, H₃-30), 1.11 (d, J = 6.4 Hz, H₃-29), 1.18 (m, H_a-12), 1.21 (s, H₃-11), 1.21 (m, H₂-23), 1.22 (s, H₃-25), 1.30 (m, H_a-7), 1.35 (s, H₃-26), 1.54 (s, H₃-15), 1.65 (s, H₃-16), 1.65 (s, H₃-21), 1.66 (s, H₃-20), 1.77 (m, H₂-23), 1.79 (dd, J = 12.4, 3.2 Hz, H_β-7), 2.06 (m, H_β-8), 2.06 (m, H-28), 2.13 (m, H_β-12), 2.35 (m, H_a-17), 2.39 (m, H₂-22), 2.45 (m, H_β-17), 4.91 (t, J = 6.8 Hz, H-13), 4.98 ppm (t, J = 6.8 Hz, H-18); ¹³C NMR: see

Table 1; EIMS: m/z (%): 468 $[M]^+$ (33), 399 (34), 357 (100), 331 (62), 277 (67); HR-EIMS: calcd for $C_{30}H_{44}O_4^+$: 468.3239; found: 468.3242 $[M]^+$.

Garcinielliptone C (3): Colorless oil; $[\alpha]_D = -40$ (c = 0.16 in CHCl₃); IR (film on NaCl): $\tilde{\nu} = 3416$ (OH), 1723 (C=O), 1631, 1605 cm⁻¹; ¹H NMR ([D₁]CHCl₃): $\delta = 0.97$ (d, J = 6.8 Hz, H₃-30), 1.02 (s, H₃-10), 1.06 (d, J = 6.8 Hz, H₃-29), 1.19 (s, H₃-21), 1.20 (s, H₃-26), 1.24 (s, H₃-25), 1.24 (s, H₃-11), 1.37 (s, H₃-20), 1.46 (m, H_a-7), 1.48 (m, H₂-23), 1.50 (m, H_b-8), 1.53 (s, H₃-16), 1.67 (s, H₃-15), 1.75 (dd, J = 12.8, 5.8 Hz, H_a-17), 1.75 (dd, J = 12.8, 5.8 Hz, H_a-17), 1.75 (dd, J = 12.8, 5.8 Hz, H_a-17), 2.26 (m, H₂-22), 2.64 (dd, J = 12.8, 11.2 Hz, H_b-17), 4.54 (dd, J = 11.2, 5.8 Hz, H_a-18), 4.92 ppm (t, J = 7.2 Hz, H-13); ¹³C NMR: see Table 1; EIMS: m/z (%): S02 [M]⁺ (14), 468 (18), 415 (11), 347 (39), 305 (24), 287 (28), 234 (48); HR-EIMS: calcd for C₃₀H₄₆O₆⁺: 502.3294; found: 502.3305 [M]⁺.

Garcinielliptone D (4): Colorless oil; $[\alpha]_D = -22$ (c = 0.12 in CHCl₃); IR (film on NaCl): $\bar{\nu} = 3416$ (OH), 1724 (C=O), 1646, 1602 cm⁻¹; ¹H NMR ([D₁]CHCl₃): $\delta = 0.81$ (t, J = 7.6 Hz, H₃-31), 1.00 (s, H₃-25), 1.04 (d, J = 6.8 Hz, H₃-29), 1.25 (s, H₃-26), 1.32 (s, H₃-10), 1.33 (m, H_a-12), 1.36 (dd, J = 13.6, 7.2 Hz, H_a-7), 1.41 (s, H₃-11), 1.49 (s, H₃-15), 1.58 (m, H_β-8), 1.58 (m, H_a-30), 1.62 (s, H₃-16), 1.63 (s, H₃-21), 1.64 (s, H₃-20), 1.77 (m, H₂-23), 1.81 (m, H_β-7), 1.95 (m, H_β-12), 2.04 (m, H_β-30), 2.09 (m, H-28), 2.39 (m, H₂-17), 2.47 (m, H₂-2), 4.89 (t, J = 7.2 Hz, H-13), 4.95 ppm (t, J = 7.2 Hz, H-18); ¹³C NMR: see Table 1; EIMS: m/z (%): 498 $[M - 2]^+$ (1), 482 (35), 425 (14), 357 (90), 291 (97); HR-EIMS: calcd for C₃₁H₄₆O₅+: 498.3345; found: 498.3340 $[M - 2]^+$.

Garcinielliptone E (5): Colorless oil; $[\alpha]_{\rm D} = -51$ (c = 0.18 in CHCl₃); IR (film on NaCl): $\bar{\nu} = 3313$ (OH), 1769, 1739, 1675 cm⁻¹ (C=O); ¹H NMR ([D₁]CHCl₃): $\delta = 0.87$ (m, H_β-6), 0.87 (d, J = 6.8 Hz, H₃-13), 0.93 (s, H₃-14), 1.09 (d, J = 6.8 Hz, H₃-12), 1.09 (m, H_a-17), 1.18 (m, H_β-17), 1.18 (m, H_a-21), 1.19 (s, H₃-19), 1.22 (s, H₃-20), 1.22 (m, H_a-7), 1.25 (s, H₃-15), 1.54 (s, H₃-25), 1.55 (s, H₃-30), 1.67 (s, H₃-24), 1.68 (s, H₃-29), 1.71 (td, J = 13.4, 4.4 Hz, H_a-16), 1.87 (dd, J = 14.0, 3.6 Hz, H_β-7), 2.07 (brd, J = 13.2 Hz, H_β-21), 2.32 (td, J = 13.4, 4.4 Hz, H_β-16), 2.40 (d, J = 8.4 Hz, H₂-26), 3.22 (m, H-11), 4.91 (t, J = 7.6 Hz, H-22), 5.33 ppm (t, J = 7.2 Hz, H-27); ¹³C NMR: see Table 1; EIMS: m/z (%): 484 (12), 416 (11), 388 (26), 345 (54), 319 (100); HR-EIMS: calcd for C₃₀H₄₆O₆+: 502.3294; found: 502.3288 [M]+.

Mast cell degranulation: Heparinized Tyrode's solution was injected into the peritoneal cavity of exsanguinated rat (Sprague – Dawley, 250–300 g). After abdominal massage, the cells in the peritoneal fluid were harvested and then separated in 38 % bovine serum albumin in glucose-free Tyrode's solution. The cell pellets were washed and suspended in Tyrode's solution. Cell suspension was pre-incubated at 37 °C with DMSO or drugs (3, 10, 30, 50, or 100 µM) for 3 min. Fifteen minutes after the addition of compound 48/ 80 (10 µgmL⁻¹), β -glucuronidase (phenolphthalein- β -D-glucuronide as substrate, 550 nm) and histamine (*o*-phthadialdehyde condensation, 350/ 450 nm) in the supernatant were determined. The total content was measured after treatment of the cell suspension with Triton X-100. The percentage released was determined.^[8] To eliminate the effect of the solvent on the mast cell degranulation, the final concentration of DMSO was fixed at 0.5%.

Neutrophil degranulation: Blood was withdrawn from a rat and mixed with EDTA. After dextran sedimentation, Ficoll–Hypaque separation, and hypotonic lysis of the residual erythrocytes, neutrophils were washed and suspended in Hanks' balanced salt solution (HBSS) to 1×10^7 cellsmL^{-1.[9]}

The cell suspension was pre-incubated at 37 °C with DMSO or drugs for 10 min, and then stimulated with fMLP (1 µm)/CB (5 µgmL⁻¹). After 45 min, the lysozyme and β -glucuronidase in the supernatant were determined.^[10, 11] The total content was measured after treatment of the cell suspension with Triton X-100 and the percentage released was calculated. The final volume of DMSO was ≤ 0.5 %.

Superoxide anion formation: Superoxide anion formation was measured in term of superoxide dismutase inhibitable cytochrome *c* reduction.^[12] Neutrophil suspension was preincubated with 0.5% DMSO or drugs for 3 min, and then superoxide dismutase or HBSS was added into the blank and test wells, respectively. After addition of cytochrome *c*, reaction was initiated by stimulating with fMLP (0.3 μ M)/CB (5 μ g/ml) or PMA (3 nM). Thirty minutes later, the reaction was terminated by centrifugation, and the absorbance changes of supernatant were monitored at 550 nm in a microplate reader. The final concentration of drugs in DMSO was fixed at 0.5%.

Statistical analysis: Data are presented as the mean \pm s.e.m. Statistical analyses were performed using the least significant difference test method after analysis of variance. *P* values < 0.05 were considered to be significant. Analysis of the regression line was used to calculate IC₅₀ values.

Acknowledgement

This work was partially supported by a grant from the National Science Council of the Republic of China (NSC 90-2320-B 037-042).

- M. Iinuma, H. Tosa, T. Tanaka, R. Shimano, F. Asai, S. Yonemori, *Phytochemistry* 1994, 35, 1355–1360.
- [2] H. Minami, M. Kinoshita, Y. Fukuyama, M. Kodama, T. Yoshizawa, M. Sugiura, K. Nakagaw, H. Tago, *Phytochemistry* **1994**, *36*, 501 – 506.
- [3] C. N. Lin, C. W. Kiang, C. M. Lu, R. R. Wu, K. H. Lee, *Chem. Commun.* 1996, 1315–1316.
- [4] M. I. Chung, H. J. Su, C. N. Lin, J. Nat. Prod. 1998, 61, 1015–1016.
- [5] Y. Fukuyama, A. Kuwayama, H. Minami, Chem. Pharm. Bull. 1997, 45, 947–949.
- [6] Y. Fukuyama, H. Minami, A. Kuwayama, *Phytochemistry* 1998, 49, 853–857.
- [7] A. W. Segal, A. Abo, Trends Biochem. Sci. 1993, 18, 43-47.
- [8] J. P. Wang, S. L. Raung, C. N. Lin, C. M. Teng, Eur. J. Pharmacol. 1994, 251, 35–42.
- [9] J. P. Wang, S. L. Raung, Y. H. Kuo, C. M. Teng, *Eur. J. Pharmacol.* 1995, 288, 341–348.
- [10] D. R. Absolom, Methods Enzymol. 1986, 132, 92-179.
- [11] A. J. Barrett, A Laboratory Handbook, Elsevier, Amsterdam, 1972, pp. 118–120.
- [12] S. B. Corradin, J. Mauel, S. D. Donini, E. Quattrocchi, P. Ricciardi-Casragnoli, *Glia* 1993, 7, 255–262.

Received: October 29, 2002 [F4535]